

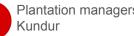
A SELF-LEARNING ONLINE PROGRAM FOR THE NATION Official launch by YAB Dato' Seri Anwar bin Ibrahim The Right Honourable Prime Minister

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

Digital Twin in Agriculture

UPM's Digital Twin Agricultural Monitoring System marks a significant milestone by embracing IR 4.0 principles. This system precision agriculture for improved food utilizes production, aquaculture, and sustainable forest plantation management with a focus on biodiversity. The accomplishment lies in creating and implementing a digital twin approach for farming, enabling real-time monitoring of plant growth and continuous improvement of agricultural ecosystems. The system optimizes factors like water irrigation, air quality, soil conditions, temperature, and humidity while minimizing energy input. It also serves as a proactive measure against potential issues like disease outbreaks and pests, contributing to more sustainable and productive agricultural landscapes in harmony with nature.

Faculty of **Agriculture** University **Community Transformation** Centre Faculty of **Engineering** Faculty of Science Computer and Information Technology Faculty of **Forestry** International Institute of Aquaculture & Aquatic Science Institute of **Plantation** Studies Institute of **Tropical Forestry** and Forest Products Institute for Mathematical Research Smart Farming Research Centre Research Management Centre, UPM


contact :khalina@upm.edu.my Funder : MyRA , The Office of the **Deputy Vice Chancellor Research &** Innovation (Nov2022-Dec 2023)

Pekebun MOSTI Strategic Planning, and Kampung Kundur Pedas Negeri Sembilan,

Pertubuhan Peladang Kawasan (PPK) Langkawi & Pesawah Tanjung Karang

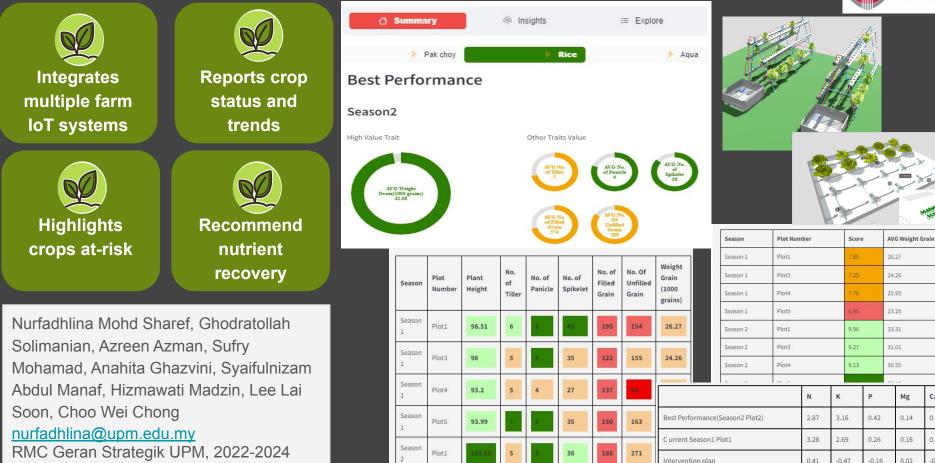
Aquaculture - 10 Families at Temerloh or Pekan, Pahang

Plantation managers - Sg Buloh & Kg.

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM) 1000 Contraction of the second

Program	Digital Agricultural Extension Centre	
Description	With the aspiration from Daya Cipta Ekonomi MADANI , we aim to establish rural and university digital extension centres to accelerate the adaptation of IR 4.0 and precision farming in agricultural innovations (smart agriculture, GIS & GPS for soil scanning and data management, hydroponics, algae raw materials, drone technology, agriculture at sea, and crop diversity for the society.	
Entity	Universiti Putra Malaysia	San Maria and
Funder	Industry-University Matching grants	
Researchers	Assoc. Prof. Dr. Ts Nurfadhlina Binti Mohd Sharef, Assoc. Prof. Dr. Siva Kumar Balasundram, Assoc. Prof. Dr. Ahmad Fikri Bin Abdullah, Assoc. Prof. Dr. Nazmi Bin Mat Nawi, Assoc. Prof. Dr. Aimrun Wayayok, Assoc. Prof. Dr. Natrah Fatin Bt Mohd Ikhsan, Dr. Ruzana Adibah Binti Mohd Sanusi and Prof. Ir. Ts. Dr Khalina Abdan.	
Contact info	khalina@upm.edu.my	serind you Selon and

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)


Contraction of the

Project Title	MyAgriDT: Digital Twin System for Integrated Multi-Crop Intelligence	
Description	MyAgriDT revolutionizes crop management by introducing a Digital Twin prototype that addresses the challenges of optimizing crop growth and yield. Unlike existing works, this system integrates multi-enterprise farm IoT systems and crop growth records into a centralized crop data lake overcoming challenges related to data consistency and providing a comprehensive understanding of crop dynamics.	
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM	
Funder	RMC Geran Strategik UPM, 2022-2024	
Researchers	Nurfadhlina Mohd Sharef, Ghodratollah Solimanian, Azreen Azman, Sufry Mohamad, Anahita Ghazvini, Syaifulnizam Abdul Manaf, Hizmawati Madzin, Lee Lai Soon, Choo Wei Chong	
Contact info	nurfadhlina@upm.edu.my	

MyAgriDT: Digital Twin System for Integrated Multi-Crop Intelligence

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

Project Title	Real-Time Grain Loss Monitoring System	
Description	The system can monitor the amount of grain loss during harvest in real-time and alert an operator of a combine harvester to adjust the machine settings to be operated at the optimum speed to minimise grain loss	
Entity	Faculty of Engineering (FK), UPM	
Funder	RMC Geran Strategik UPM, 2022-2024	
Researchers	Nazmi Mat Nawi, Bomoi Muhammad Isa, Samsuzana Abd Aziz, Muhammad Saufi Mohd Kassim	
Contact info	nazmimat@upm.edu.my	

Real-Time Grain Loss Monitoring System

Monitoring screen inside cabin

for remote monitoring

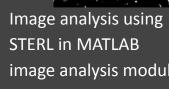
Laboratory tested

Nazmi Mat Nawi, Bomoi Muhammad Isa, Samsuzana Abd Aziz, Muhammad Saufi Mohd Kassim <u>nazmimat@upm.edu.my</u> RMC Geran Strategik UPM, 2022-2024

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM) and the second second

Project Title	SMART Pineapple Farm Management	
Description	A sensor tower to monitor the plant growth, soil characteristics, weather parameters and pest detection installed at pineapple farm will enable farm manager to retrieve the on-site information via IoT connection. More efficient pineapple farm management can be practiced through the developed SMART pineapple system.	
Entity	Faculty of Engineering (FK), UPM	
Funder	RMC Geran Strategik UPM, 2022-2024	
Researchers	Aimrun Wayayok, Norhashila binti Hashim, Ahmad Fikri bin Abdullah, Tengku Adhwa Shaherah binti Tengku Mohd Suhairi, Qistina Aqilah binti Adbul Rahman	
Contact info	aimrun@upm.edu.my	

SMART Pineapple Farm Management

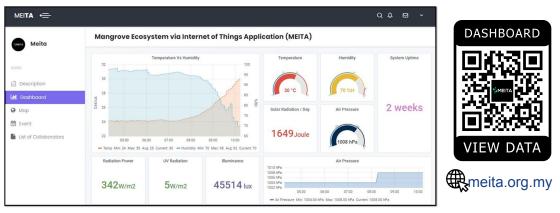

Soil

monitoring

Aimrun Wayayok, Norhashila binti Hashim, Ahmad Fikri bin Abdullah, Tengku Adhwa Shaherah binti Tengku Mohd Suhairi, Qistina Aqilah binti Adbul Rahman aimrun@upm.edu.my RMC Geran Strategik UPM, 2022-2024

9.00 cm - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

Project Title	Aquatic Environmental Monitoring in Mangrove Ecosystem via Internet of Things Application	
Description	This project is a continuation of MEITA or 'Sustainable Aquatic Resource Management in Mangrove Ecosystem via Internet of Things Application' project with the mission to connect, empower, and provide awareness to the global community on the importance of mangroves and its ecosystem monitoring through the use of technology. This project involved various academic institutions in the Europe and Asia.	
Entity	Faculty of Agriculture, UPM	
Funder	Geran Putra IPB, 2022-2024	
Researchers	Prof. Madya Dr. Natrah Fatin Mohd Ikhsan, Prof. Ir. Dr. Aduwati Sali, Dr. Annie Christianus, Dr. Evelyn Lim Ai Lin, Prof. Ir. Ts. Dr. 'Athif Mohd Faudzi, Dr. Ahmad Aldrie Amir, Prof. Madya Dr. Yuzine Esa, Dr. Dania Aziz, Dr. Norhariani Mohd Nor, Prof Dr. Muta Harah Zakaria	
Contact info	natrah@upm.edu.my	


Aquatic Environmental Monitoring in Mangrove Ecosystem via Internet of Things Application

Installed on site:

1)LoRA Gateway, Solar Power System

- 2) Environmental Sensor
- 3) Water Level Sensor
- 4) Soil Temperature & Soil Humidity Sensor

Parameters measured

Temperature, Humidity, Solar radiation, UV Radiation, Illuminance, Particulate matter, Precipitation, Air Pressure, Wind speed, Wind direction, Water level, Soil temperature, Soil humidity

Prof. Madya Dr. Natrah Fatin Mohd Ikhsan, Prof. Ir. Dr. Aduwati Sali, Dr. Annie Christianus, Dr. Evelyn Lim Ai Lin, Prof. Ir. Ts. Dr. 'Athif Mohd Faudzi, Dr. Ahmad Aldrie Amir

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

Project Title	DEVELOPMENT OF DIGITAL NURSERY MONITORING AND MANAGEMENT OF BAMBOO AND EUCALYPTUS	
Description	The system can monitor the environmental factors such as soil moisture, air temperature and relative humidity as an alert to the nursery managers based on the watering requirement of the selected plants. This system provides support in optimising plant growth in the nursery, consequently contributing to the production of high quality planting materials.	
Entity	Institute of Tropical Forestry and Forest Products (INTROP), UPM	
Funder	RMC Geran Strategik UPM, 2022-2024	
Researchers	Dr. Ruzana Adibah Mohd Sanusi, Dr. Sheriza Mohd Razali, Dr. Syahmi Hishamudin, Prof. Ir. Ts. Dr. Khalina Abdan, Prof. Ir. Dr. Aduwati Sali, Prof. Dr. Hazandy Abd Hamid, Dr. Norfaryanti Kamaruddin, Mohd Hambali Mohd Jailani	
Contact info	ruzanasanusi@upm.edu.my	

DIGITAL NURSERY MONITORING AND MANAGEMENT OF BAMBOO AND EUCALYPTUS

Nursery digital monitoring for plant management and overall efficiency

Precise and accurate data on environmental conditions

Remote Monitoring
Optimal Growing Conditions
mizing resource usage

B1: Temperature 78.3 F B2: Relative Humidity 95.7 % D1: WaterScout SM 100 21.7 %VWC E1: WaterScout SM 100 18.9 %VWC Absolute Humidity 22.9 g/m³ Dew Point 76.9 F VPD 0.14 kPa

Real-time Speconnet Watchdog system

Ruzana Sanusi, Sheriza Razali, Syahr Hishamudin, Khalina Abdan, Aduwa Sali, Hazandy Abd Hamid,. Norfaryar Kamaruddin, Hambali Jailani

ruzanasanusi@upm.edu.my RMC Geran Strategik UPM, 2022-2024

100 are - Alli per i B. Arnony 2004 Annue here interest faite Manyon (and

Project Title	Optimization of rice production using precision agriculture and data-driven approaches
Description	This study delves into leveraging AI methodologies to optimize nutrient application, contributing to enhanced crop productivity and addressing crucial facets of global food security and self sufficiency in rice production.
Entity	Faculty of Agriculture, UPM
Funder	UPM Strategic Grant, 2022-2024
Researcher	Siva K Balasundram
Contact info	siva@upm.edu.my

AI FOR NUTRIENT MANAGEMENT IN RICE

One of the biggest challenge in IR 4.0 is to eradicate hunger, achieve food security, better nutrition and sustainable agriculture

Rice is the major staple food of Asia, and an important source of employment and income in rural areas, particularly in low-income countries leveraging AI methodologies to optimize nutrient application, contributing to enhanced crop productivity and addressing crucial facets of global food security and self-sufficiency in rice production

This study delves into

KEY FINDINGS:

1. Variations in C:N and K:N directly impacts yield

2. Gradient Boost Machine appears to be more stable across different seasons and time points

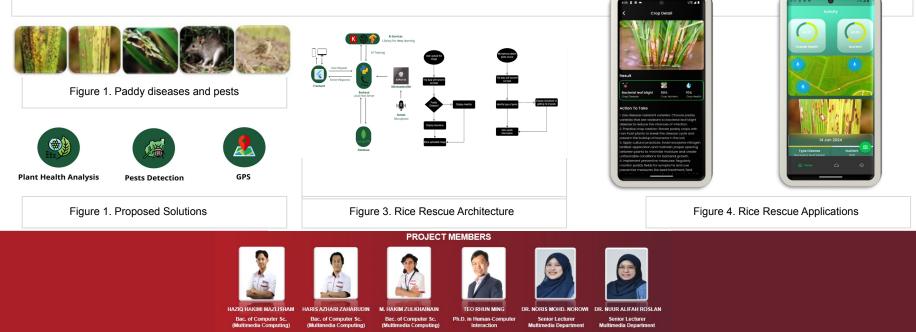
3. C:N exhibits a better significance in seasons 1 and 3 than in season 2. But with K:N, the significance is gradually increasing across seasons.

Study site: IADA Seberang Perak, Kampung Gajah, Perak, Malaysia Study duration: 3 planting seasons (1st & 3rd dry season, 2rd wet season) Data collected from the field:

Days Alter Seeing	M	Plat	20	Spetral (m)	
0	C.pH.X.P.K.CA M4.CEC	-		100	
顶	CHENE	NEKOLVE	lal	1.41	
45			Inf	750-2500	
10	CHENK	N.EK.GA.Mg	Lal	0	
90	C.pEX.2.E.G. Ng.GEC	X EK. CL. Mp	Inf	290-2500	

Siva K Balasundram | siva@upm.edu.my UPM Strategic Grant, 2022-2024

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

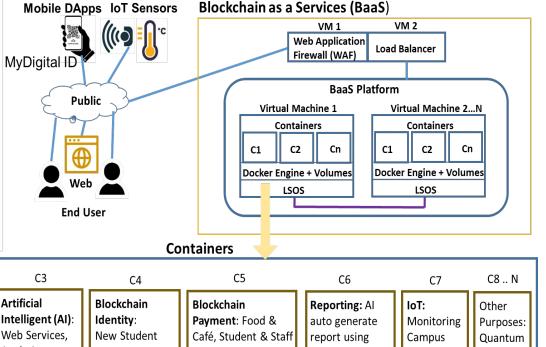

Contraction of the second

Project Title	RiceRescue: An Al-Enhanced Multimodal System for Paddy Health Status Monitoring and Pests Detection	
Description	This project is centered on the detection of diverse diseases affecting paddy crops, as well a signaling nutrient deficiencies in the plant. Through multimodalities (image and sound), the syster is able to capture and identify various classes of paddy diseases (e.g. Bacterial Leaf Blight, Brow Spot, Leaf Smut, and Bacterial Pinnacle Blight), paddy pests (e.g. Rice Gall Midge, Rice Lea Caterpillar, Rice Leaf Roller, Rice Leaf Hopper, Rice Shell Pest, and Rice Water Weevil), as we through the sounds of pests, e.g. Cicadas, Mice, Frogs, Birds, and Snakes. Additionally, the proje leverages IoT technology to incorporate sound detection of pests, providing real-time information through a mobile application synchronized with the IoT's GPS.	
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM	
Funder	N/A	
Researchers	Noris Mohd Norowi, Nuur Alifah Roslan, Haziq Hakimi Mazlisham, Haris Azhari Zainudin, Muhammad Hakim Zulkhainain, Teo Rhun Ming	
Contact info	noris@upm.edu.my	

RiceRescue: An Al-Enhanced Multimodal System for Paddy Health Status Monitoring and Pests Detection

This project is centered on the detection of diverse diseases affecting paddy crops, as well as signaling nutrient deficiencies in the plant. Through multimodalities (image and sound), the system is able to capture and identify various classes of paddy diseases (e.g. Bacterial Leaf Blight, Brown Spot, Leaf Smut, and Bacterial Pinnacle Blight), paddy pests (e.g. Rice Gall Midge, Rice Leaf Caterpillar, Rice Leaf Roller, Rice Leaf Hopper, Rice Shell Pest, and Rice Water Weevil), as well through the sounds of pests, e.g. Cicadas, Mice, Frogs, Birds, and Snakes. Additionally, the project leverages IoT technology to incorporate sound detection of pests, providing real-time information through a mobile application synchronized with the IoT's GPS.

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, UNIVERSITI PUTRA MALAYSIA, 43400, SERDANG, SELANGO


9.00 cm - 4.00 pm 116 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

Project Title	Smart IoT Monitoring using AI within Blockchain Technology	
Description	Smart IoT Monitoring using AI is a decentralized blockchain platform using a peer-to-peer network that securely executes and verifies application code within the Hyperledger Fabric platform. Each user can use Blockchain identity integrated with Malaysian's MyDigital ID to access and perform daily tasks seamlessly using Blockchain as a Services (BaaS) hosted in secure Docker Containers.	
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM	
Funder	N/A	
Researchers	Prof. Dr. Zuriati Ahmad Zukarnain (Principal Researcher, UPM), Prof. Dr. Ramlan Mahmod (UPM) and Ts. Dr ² Mohd Anuar Mat Isa, Alumni UPM (Developer, iExploTech Sdn Bhd,)	
Contact info	zuriati@upm.edu.my	

Smart IoT Monitoring using AI within Blockchain Technology

Smart IoT Monitoring using Al is a decentralized blockchain platform using a peer-to-peer network that securely executes MyDigital ID and verifies application code within the Hyperledger Fabric platform. Each user can Blockchain identity integrated with use Malaysian's MyDigital ID to access and perform daily tasks seamlessly usina Blockchain as a Services (BaaS) hosted in secure Docker Containers.

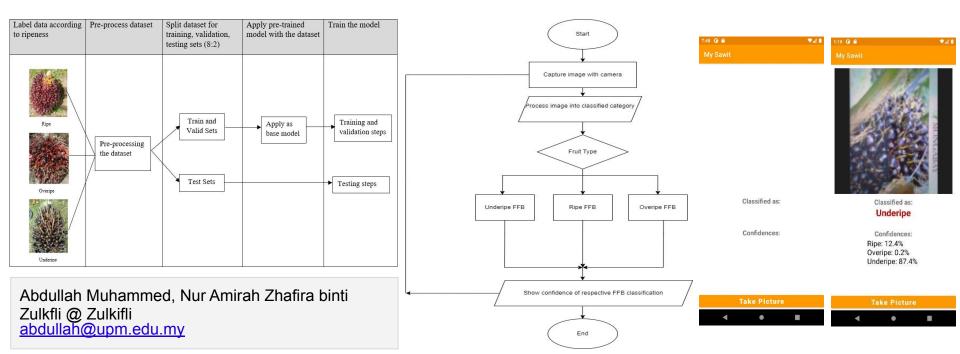
Team Members:

1. Prof. Dr. Zuriati Ahmad Zukarnain (Principal Researcher, UPM)

2. Prof. Dr. Ramlan Mahmod

(UPM)

3. Ts. Dr² Mohd Anuar Mat Isa, Alumni UPM (Developer, iExploTech Sdn Bhd,)


C1	C2	С3	C4	C5	C6	C7	C8 N
View Live Blockchain Info and Status	Laravel Web Academic Certificate Verification + Mobile APIs	Artificial Intelligent (AI): Web Services, Analytic, Report and APIs	Blockchain Identity: New Student Registration, Staff, Vendor etc.	Blockchain Payment: Food & Café, Student & Staff Ledger, Convocation, Bantuan B40, Agihan Zakat Kepada Pelajar	Reporting: Al auto generate report using blockchain data for management and KPT	IoT: Monitoring Campus and AI detection	Other Purposes: Quantum AI, Class Lecture, Research

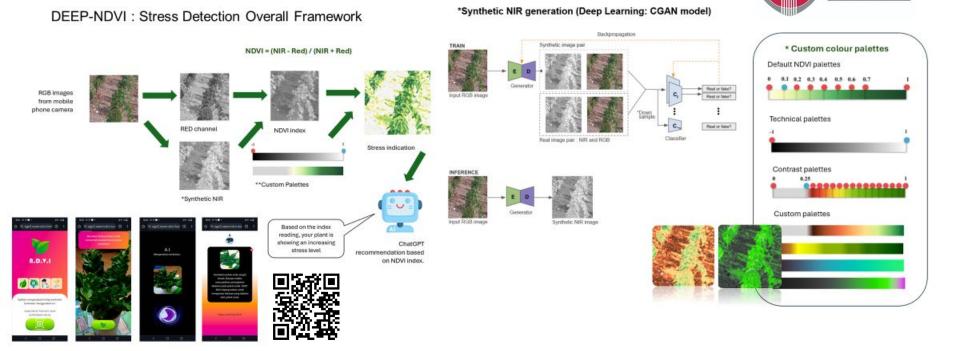
Project Title	Monitoring Oil Palm Fresh Fruit Bunches (FFB) for Effective Harvest
Description	The palm oil industry is a well-known source of income, particularly in Malaysia. Monitoring and classifying oil palm fresh fruit bunches represent a challenging and tedious task. The application is designed to assist smallholders in monitoring fruit bunch maturity and classifying them into three categories: underripe, ripe, and overripe, aiming to enhance effective harvesting and prevent harvest wastage.
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM
Funder	-
Researchers	Abdullah Muhammed, Nur Amirah Zhafira Binti Zulkfli @ Zulkifli
Contact info	abdullah@upm.edu.my

MONITORING OIL PALM FRESH FRUIT BUNCHES (FFB) FOR EFFECTIVE HARVEST

Assessing the maturity of oil palm fresh fruit bunches (FFB) manually is a tedious and challenging task; and classifying them into their respective categories is crucial. Small-scale palm oil farm owners often face the risk of being deceived by their workers due to limited knowledge in determining these categories. Therefore, the project aims to develop a mobile application utilizing a machine learning model for assessing the maturity of oil palm fresh fruit bunches (FFB). With this portable application, owners can enhance their monitoring efficiency by simply capturing images of the oil palm fresh fruit bunches. This approach allows owners to exert better control over the quality of fresh fruit bunches produced on their farms.

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putro Molaysia (UPM) -

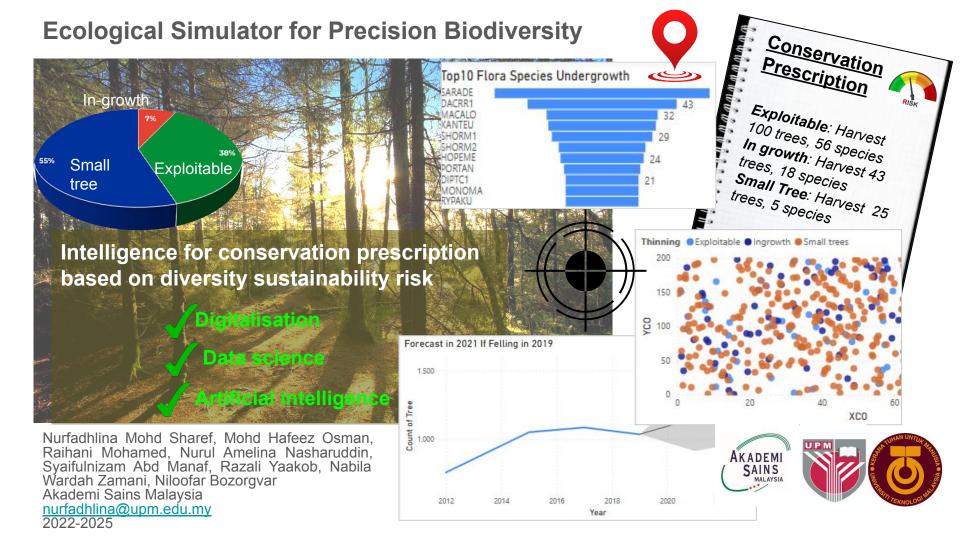
Project Title	Stress Detection in Plants with DEEP-NDVI Formulation		
Description	Most agricultural vegetation assessments employ the Normalised Difference Vegetation Index (NDVI). Divide the visible and near infrared spectral areas to get the value. However, NDVI computation needs costly hyperspectral and multispectral optical instruments. Deep-NDVI is an AI model that extracts NDVI from mobile phone RGB images. This Deep-NDVI model can predict biomass, crop health, agricultural productivity, and more. In this study, the Deep-NDVI model is employed to identify and assess plant stress. The Deep-NDVI model for stress plant detection uses a conditional generative adversarial network (CGAN) to generate Near Infrared (NIR) images, NDVI calculation, custom palettes to visualise the index, and NLP to present results and recommendations.		
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM		
Funder	Ministry of Higher Education, Malaysia		
Researchers	Puteri Suhaiza Sulaiman, Zainal Abdul Kahar		
Contact info	psuhaiza@upm.edu.my		



9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putro Malaysia (UPM)

UNIVERSITI PUTRA MALAYSIA

Stress Detection in Plants with DEEP-NDVI Model



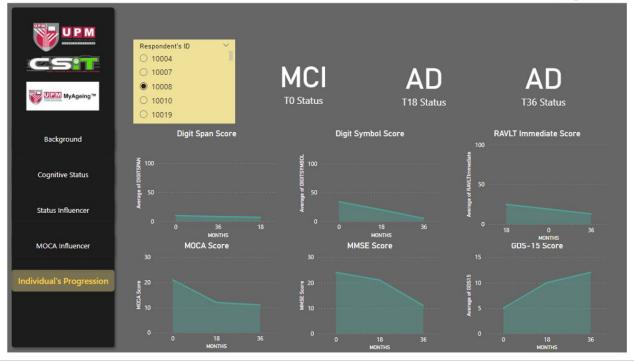
9.00 cm - 4.00 pm 118 January 2021 Dewan Besar, Universiti Putra Malaysia (UPM)

Project Title	Ecological Simulator for Precision Biodiversity
Description	Ecology simulator can support precision biodiversity initiatives by providing a controlled and customizable environment to explore ecological concepts, test hypotheses, and predict outcomes related to biodiversity. Our solution is based on 1) Data Integration: Gather and integrate biodiversity data from various sources to create a comprehensive and precise digital biodiversity model. 2) Data Analysis: Descriptive analytics to provide insightful visuals for a clearer understanding of biodiversity patterns and changes, and develop prediction algorithms based on historical data, environmental factors, and species interactions. 3) Interactive Simulations: Incorporate interactive simulations that allow users to experiment with different conservation plans and observe the potential outcomes.
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM
Funder	Rancangan Malaysia ke-12
Researchers	Nurfadhlina Mohd Sharef, Mohd Hafeez Osman, Raihani Mohamed, Nurul Amelina Nasharuddin, Syaifulnizam Abd Manaf, Razali Yaakob, Nabila Wardah Zamani, Niloofar Bozorgvar
Contact info	nurfadhlina@upm.edu.my

9.00 cm - 4.00 pm 116 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

Project Title	Cognitive Impairment Progression Prediction Tool
Description	We provide self-screening tool for MMSE progression prediction with XGBoost and a combination of demographic factors (e.g., education level, age), psychosocial assessments (e.g., GDS15), and neuropsychiatric evaluations (e.g., RAVLT and digit span). The inclusion of established neuropsychiatric assessments, such as RAVLT and digit span, strengthens the credibility of the predictive model's features, offering standardized measures of memory and working memory. This nuanced understanding enhances the accuracy of predictions by acknowledging the influence of life experiences, aging, and the interplay of variables like education level and age.
Entity	Malaysia Institute of Ageing Research (MyAgeing)
Funder	United States Air Force Office of Scientific Research
Researchers	Nurfadhlina Mohd Sharef, Anahita Ghazvini, Razali Yaakob, Norwati Mustapha, Khairul Azhar Kasmiran, Lee Lai Soon, Raja Kamil Raja Ahmad
Contact info	nurfadhlina@upm.edu.my

Cognitive Impairment Progression Prediction Tool


Do you know your risk of cognitive DEMENTIA impairment like dementia?

We provide a self-screening tool for cognitive impairment progression

RISK

Prediction using machine learning with:

- demographic factors
- psychosocial assessments
- neuropsychiatric evaluations

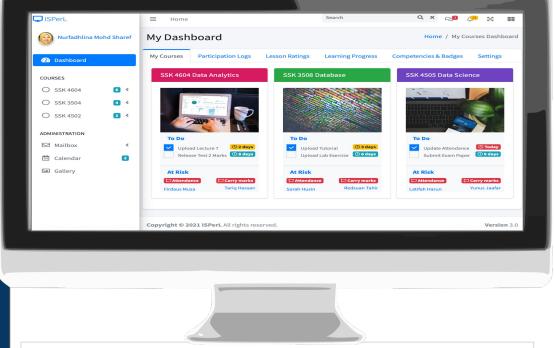
Nurfadhlina Mohd Sharef, Afiqah Anum Yusof, Fakhrul Zaman Rokhani, Mohamad Fazdillah Bagat nurfadhlina@upm.edu.my 2022-2024

9.00 cm - 4.00 pm 16 January 2024 Dewan Besar, Universiti Putra Mataysia (UPM)

Project Title	AIPerLA: Augmented Intelligence for Personalized Learning Advisory			
Description	AlPerLA is a software package for augmenting educators and students while facilitating personalized learning implementation. The purpose is to allow students to have a personalized learning plan through their history of interactions with the student information system and learning management system, and for the instructors to get a recommendation of teaching intervention to ensure a quality teaching delivery and curriculum. AlPerLA consists of five prototypes namely ISPerL, CLADS, STILA, AcaPerforma and VLearnAI.			
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM			
Funder	-			
Researchers	Nurfadhlina Mohd Sharef, Nurul Amelina Nasharuddin, Fakhrul Zamani Rokhani, Masrah Azrifah Azmi Murad, Azreen Azman			
Contact info	nurfadhlina@upm.edu.my			

AIPerLA: Augmented Intelligence for Personalized Learning Advisory

- Monitor students performance and engagement
- Review students growth and gaps
- Predict students at-risk
- Customise recommended students learning plan


- Review self progress and achievement
- Get performance prediction
- Get recommendation of learning plans and materials

administrator

Academic

- Analyze course performance
- Identify students gaps
 - Review and customize machine learning model

Nurfadhlina Mohd Sharef, Nurul Amelina Nasharuddin, Fakhrul Zaman Rokhani, Evi Indriasari Mansor, Azreen Azman, Masrah Azrifah Azmi Murad, Muhd Khaizer Omar <u>nurfadhlina@upm.edu.my</u> Ministry of Higher Education Malaysia, 2018-2024

9.00 cm - 4.00 pm 118 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

Project Title	AcaPerforma: Interactive Machine Learning-based Early Course Grade Prediction System
Description	Early student grade prediction in education is crucial for timely intervention. AcaPerforma is developed using a novel MSECosine-based Long Short Term Memory model with Generative Adversarial Network which utilises various feature combinations comprising of demography, learning traces, and assessment. The interactive machine learning approach ensures model explainability, transparency and bias mitigation to ensure responsible artificial intelligence governance.
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM
Funder	United States Air Force Office of Scientific Research
Researchers	Nurfadhlina Mohd Sharef, Anahita Ghazvini, Razali Yaakob, Norwati Mustapha, Khairul Azhar Kasmiran, Lee Lai Soon, Raja Kamil Raja Ahmad
Contact info	nurfadhlina@upm.edu.my

AcaPerforma: Interactive Machine Learning-based Early Course Grade Prediction System

Deep time series grade prediction

Using demography, learning activities and assessments

For personalised learning interventions

Adaptive machine learning approach through human in the loop

		Fea	ture Importance	
		No	Feature	Total Impo
		1	COURSE_ANALYSIS_AND_DESIGN_OF_COMPUTER_GAMES	0.4373
UNIVERSITI PU		2	COURSE_VIRTUAL_REALITY	0.3433
BERTENO	BERBARTI	3	COURSE_WEB_APPLICATION_DEVELOPMENT	0.3413
		4	COUNTRY	0.3390
S IML for AcaPerforma	а	5	COURSE_PROGRAMMING_IN_C++	0.2631
ect Main Menu		6	GENDER	0.0
nvestigation	~	APP	Y	
ect Investigation Option				
ect Investigation Option eature Importance	~		-Development Option	ıs
	~	Select		IS
	~	Select	reason for Re-Development:	ıs
	*	Select	reason for Re-Development: prove Accuracy	15
	*	Select	reason for Re-Development: iprove Accuracy ature Importance (FI) IAP	15

Nurfadhlina Mohd Sharef, Anahita Ghazvini, Razali Yaakob, Norwati Mustapha, Khairul Azhar Kasmiran, Lee Lai Soon, Raja Kamil Raja Mustafa <u>nurfadhlina@upm.edu.my</u>

Air Force Office of Scientific Research, United States. 2021-2024

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

and the second second second

Project Title	CikguAlBot: A Malay Chatbot for self Al learning
Description	CikguAlBot is a chatbot developed using Google Dialogflow that focuses on learning experience and encompasses instructional design approaches by offering content (8 topics for concepts, and 10 algorithms information), activities (such as reflection and extra reference), and assessments(8 multi-choice quizzes). It has built-in natural language processing features and is integrated into the Telegram platform. Machine learning, data mining, data science, natural language processing, image recognition, software agents, intelligent search, and evolutionary computing are some of the Al principles that are discussed. Naive Bayes, Decision Tree, Regression, Neural Network, Support Vector Machine, Random Forest, Gradient Descent, K-Means, k-Nearest Neighbout, and Apriori are among the ten algorithms presented.
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM
Funder	Ministry of Higher Education, Malaysia
Researchers	Nurfadhlina Mohd Sharef, Nurul Amelina Nasharuddin, Evi Indriasari Mansor, Masrah Azrifah Azmi Murad, Khaizer Omar, Normalia Samian, Faaizah Shabodin, Noreen Izza Arshad
Contact info	nurfadhlina@upm.edu.my

CikguAlBot: A Malay Chatbot for self Al learning

Hi! CikguAlBot is a Telegram-based chatbot that converse in Malay to teach Al.

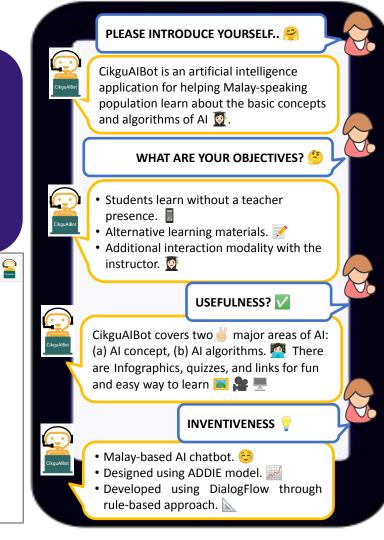
Students can interact, navigate the topics, and answer quizzes.

CikauAlBot

CikguAlBot is developed using Google DialogFlow.

〈 Chats

Nurfadhlina Mohd Sharef, Nurul Amelina Nasharuddin, Evi Indriasari Mansor, Masrah Azrifah Azmi Murad, Khaizer Omar, Normalia Samian, Faaizah Shabodin, Noreen Izza Arshad


nurfadhlina@upm.edu.my

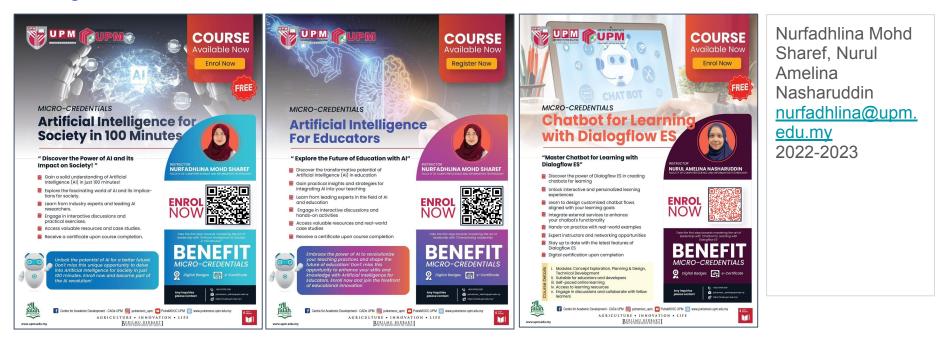
Ministry of Higher Education Malaysia, since 2018-2022

Mari dalami kepelbagaian konsep Al menerusi bab berikut: Bab 1: Pembelajaran Mesin Bab 2: Perlombongan Data Bab 3: Sains Data Bab 4: Pemprosesan Bahasa Tabii Bab 5: Pengecaman Imej Bab 6: Agen Perisian Bab 7: Pencarian Pintar Bab 8: Pengkomputan Berevolusi 22:54

CikguAlBot

Tekan butang Bab 1 bagi mempelajari konsep Pembelajaran Mesin. 22:54

9:00 am - 4:00 pm 118 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)



Project Title	Al4Edu Micro-credentials Program
Description	The "Al4Edu Micro-credentials Program" is a comprehensive educational initiative comprising three courses: "Al for Society in 100 Minutes," "Al for Educator," and "Chatbot for Learning with DialogFlow ES." The program aims to empower educators and professionals with essential knowledge and skills in the field of artificial intelligence (AI) to effectively integrate these technologies into educational settings. The courses cover a range of topics, from the broader societal impact of AI to specialized skills in creating chatbots for enhanced learning experiences using DialogFlow ES. By providing participants with practical insights and hands-on experience, the Al4Edu Micro-credentials Program equips them with the expertise needed to navigate the evolving landscape of AI in education.
Entity	Faculty of Computer Science and Information Technology (FSKTM), UPM
Funder	Ministry of Higher Education, Malaysia
Researchers	Nurfadhlina Mohd Sharef, Nurul Amelina Nasharuddin
Contact info	nurfadhlina@upm.edu.my

Al4Edu Micro-credentials Program

The "AI4Edu Micro-credentials Program" is an open education initiative comprising three courses: "AI for Society in 100 Minutes," "AI for Educator," and "Chatbot for Learning with DialogFlow ES."

The program aims to empower educators and professionals with essential knowledge and skills in the field of artificial intelligence (AI) to effectively integrate these technologies into educational settings.

9.00 cm - 4.00 pm 118 Jonuary 2024 Dewan Besar, Universiti Putra Mataysia (UPM)

Project Title	IEEE CASS Microlearning (CASS MiLe) platform
Description	CASS Microlearning (CASS MiLe) is dedicated to empowering and equipping IEEE members and lifelong learners with an engaging and satisfying educational experience through the provision of competency-based microlearning on an e-learning platform. Artificial Intelligence is one of the competencies provided under the umbrella of CASS MiLe.
Entity	Faculty of Engineering, UPM
Funder	IEEE Circuit and Signal System Society
Researchers	Fakhrul Zaman Rokhani, Nurfadhlina Mohd Sharef, Ahmad Salahuddin Harithuddin, Ain Kamsani, Lee Lini
Contact info	fzr@upm.edu.my

IEEE CASS Microlearning (CASS MiLe) platform

CASS Microlearning (CASS MiLe) is an online learning platform powered by IEEE Circuit and Signal System Society. The platform is founded by Malaysians, and now have students from more than 153 countries since its establishment in 2021.

Artificial Intelligence is one of the competencies provided under the umbrella of CASS MiLe. The platform is equipped with intelligence to monitor courses participation for personalized student progress intervention.

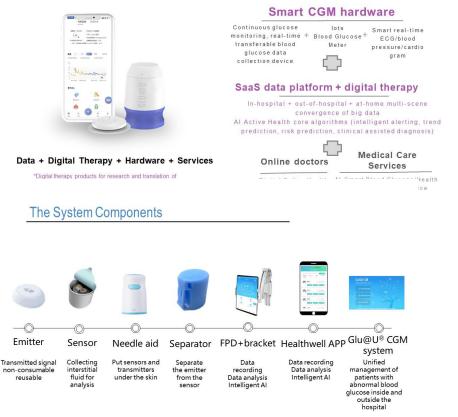
Machine Learning Systems: Low- Energy VLSI Architectures and Applications	On-Chip Epilepsy Detection: Where Machine Learning Meets Wearable, Patient-Specific Wearable Healthcare	Machine Learning and Optimization for Communications and Deep Networks	Machine Learning for Analytics Architecture: Al to Design Al	Machine Learning in Agrifood – Series 1 AI/ML	Machine Learning in Agrifood - Series 2 AI/ML
--	---	---	--	---	---

Fakhrul Zaman Rokhani, Nurfadhlina Mohd Sharef, Ahmad Salahuddin Harithuddin, Ain Kamsani, Lee Lini <u>fzr@upm.edu.my</u> IEEE Circuit and Signal System Society, since 2021

9:00 cm - 4:00 pm 118 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

Project Title	GLU@U: Smart and Integrated Digital Healthcare SaaS Platform for Real-Time Glucose Monitoring
Description	GLU@U is a smart and integrated real-time glucose monitoring system enable by artificial intelligence (AI) which provide data support and decision-making basis in preventing and controlling diabetes and its complications. It offers consistent, thorough and reliable blood glucose information throughout the day that may provide a smart healthy living environment for everyone.
Entity	Faculty of Design and Architecture, Universiti Putra Malaysia
Funder	-
Researchers	Mohd Johari Mohd Yusof; Jiao Fenglei; Shureen Faris Abd Shukor; Nor Zalina Harun
Contact info	m_johari@upm.edu.my

GLU@U


Smart and Integrated Digital Healthcare SaaS Platform for Real-Time Glucose Monitoring

The prevalence of diabetes is still rising globally as a result of changes in lifestyle. According to statistics, the prevalence rate of diabetes was 8.8% in 2017, affecting over 415 million individuals worldwide between the ages of 20 and 79. The annual treatment cost for a single patient is significantly lower than that of developed nations, despite the fact that the awareness cure rate and management compliance rate are relatively low. A lack of medical resources, uncooperative patients, and inaccurate monitoring and treatment are the main causes. Continuous glucose monitoring (CGM) is a monitoring technique that measures the concentration of glucose in the subcutaneous interstitial fluid using alucose sensors to reflect the blood glucose level. It can offer consistent, thorough, and reliable blood alucose information throughout the day, assist in creating individualized, exact treatment regimens, offer visual tools for diabetes education, and enhance patient compliance and the efficiency of overall care. In order to serve the population with diabetes and its complications, the purpose of this innovation is to construct a set of multi-modal monitoring and digital diagnosis and treatment management mode driven by CGM and enabled by AI. GLU@U would be able to provide data support and decision-making basis in preventing and controlling diabetes and its complications, and obviously, this data-driven and algorithm-based solution may provide a smart healthy living environment for everyone.

Mohd Johari Mohd Yusof | Jiao Fenglei | Shureen Faris Abd Shukor | Nor Zalina Harun FRSB, UPM

GLU@U

Malaysia's first digital healthcare SaaS platform for continuous glucose monitoring for active health

9.00 am - 4.00 pm | 16 January 2024 Dewan Besar, Universiti Putra Malaysia (UPM)

Project Title	Social AI: Advancing Inclusive & Diverse Communication for All
Description	Social AI is dedicated to creating inclusive & diverse communication tools for the people (rakyat) of Malaysia, with a focus on enhancing accessibility for individuals with disabilities. It able to recognize both speech and hand sign gestures to be translated into text-based speech so that the AI powered Large Language Model could help to answer any queries. The technology combines image detection (face & hand gesture), speech detection, and generative AI model.
Entity	Faculty of Science (FS), UPM
Funder	-
Researchers	Mohd Amiruddin Abd Rahman, Caceja Elyca Anak Bundak, Nurin Syazwina Mohd Haniff, Nur Athirah Mohd Shazali, Siti Fairuz Mat Radzi, Athiyyah Qistina Abdul Hakim, Lokman Hakim Muhamad, Muhammad 'Aqil Syahiran Izham, Badrul Munir Mustafa Kamal
Contact info	mohdamir@upm.edu.my

Social AI: Advancing Inclusive & Diverse Communication for All

Social AI is dedicated to creating inclusive communication tools for the people (rakyat) of Malaysia, with a focus on enhancing accessibility for individuals with disabilities. The initiative Al-powered emplovs various technologies to improve communication interactions within the nation. The project integrates specific AI technologies tailored to the community's needs, including face detection technology for seamless visual engagement. Natural language processing (NLP) is utilized to recognition, facilitate smooth speech enabling effortless conversations with an AI voice chatbot (Sembangbot). The project also emphasizes the integration of sign language recognition (OKU AI), catering to individuals in the community who primarily use sign language for effective expression and communication. Social AI serves as an integrated platform combining face detection, natural language processing, and sign language recognition, enabling facial recognition and interactive Q&A sessions with the people. The platform translates sign language gestures into meaningful speech or text displayed on the screen.

Mohd Amiruddin Abd Rahman, Caceja Elyca Anak Bundak, Nurin_Syazwina_ Mohd Haniff, Nur Athirah Mohd Shazali, Siti Fairuz Mat Radzi, Athiyyah Qistina Abdul Hakim, Lokman Hakim Muhamad, Muhammad 'Aqil Syahiran Izham, Badrul Munir Mustafa Kamal mohdamir@upm.edu.my 2024

How Social Al Works Speech & Sign Language **Text to Speech** iO) Recognition The computer vision system capable Synthesis voice responce of recognizing and interpreting sign that translates the users commands with text-tolanguage gestures and capture speech software. person's speech 03 0 0 01 0000 00 0 0000 Facial Recognition AI Assistant This technology uses face An application program form of detection to recognize a NLP, that understands natural person's face and language commands and identifying them. completes tasks for the user Sembangbot **OKU AI** for SIGN LANGUAGE RECOGNITION SYSTEM for AI VOICE CHAT ALIGN YOUR DO SIGN FACE TOWARDS LANGUAGE THE CAMERA [ALPHABET] ASK YOUR QUESTIONS LISTEN TO THE 2 THROUGH THE VOICE OUTPUT MICROPHONE VIEW THE ANSWER VIEW THE THORUGH THE TRANSLATED SCREEN GESTURES